RESEARCH

Estimation of years of life lost by Sweden's relaxed COV ID-19 mitigation strategy

Martin Rypdal^{1*}, Kristoffe⁷ Rypdal¹, Ola Løvsletten², Sigrunn Holbek Sørbye¹, Elinor Ytterstad¹ and Filippo Maria Bianchi¹

*Correspondence: martin.rypdal@uit.no

¹Department of Mathematics and Statistics, UiT - The Arctic University of Norway, Norway Full list of author information is available at the end of the article

Abstract

2

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

11 Objective: To estimate the weekly excess all-cause mortality in Norway and 12 Sweden, and to estimate the years of life lost (YLL) attributed to COVID-19 in Sweden and the significance of mortality displacement. 13 Methods: We found expected mortality by taking the declining trend and the 14 seasonality in mortality into account. From the excess mortality in Sweden in 15 2019/20, we estimated the YLL attributed to COVID-19 using the life expectancy 16 in different age groups. We adjusted this estimate for possible displacement using 17 an auto-regressive model for the year-to-year variations in excess mortality. 18 Results: We found that excess all-cause mortality over the epidemic year (July to 19 July) 2019/20 was 517 (95%CI -12, 1074) in Norway and 4329 (3331, 5325) in Sweden. There were reported 255 COVID-19 related deaths in Norway, and 5741 20 in Sweden, that year. During the epidemic period March 11 - November 11, 21 there were 6 247 reported COVID-19 deaths and 5 517 (4 701, 6 330) excess 22 deaths in Sweden. The estimated number of life-years lost attributed to the more 23 relaxed Swedish strategy was 45 850 (13 915, 80 276) without adjusting for 24 mortality displacement and 43 073 (12 160, 85 451) after adjusting for possible 25 displacement. 26 Keywords: COVID-19; excess mortality; mortality displacement 27

28

²⁹1 Introduction

28 29

2

5

6 7

8

9

10

³⁰There is an ongoing scientific and public debate worldwide about the optimal strat-³¹egy for mitigating the negative impacts of the COVID-19 pandemic [1, 2, 3, 4, 5, 6].³¹ ³²In Europe, most countries executed strong non-pharmaceutical interventions in ³³March 2020 to combat the disease's explosive spread, and by early summer, the ³³ ¹epidemic was reasonably controlled. Among the Western-European countries, Swe-¹ ²den was an exception, adopting a more relaxed approach with mainly voluntary² ³measures [7]. As a consequence, the rate of confirmed cases entered a second and³ ⁴more substantial wave in June and a third and even stronger one throughout the⁴ ⁵autumn, coinciding with the widespread second wave in Europe. Here, the COVID-⁵ ⁶19-specific mortality rate saw one broad wave lasting from March until July, then a⁶ ⁷calm period from August till October when a second wave started. The confirmed⁷ ⁸cumulative COVID-19 death toll in Sweden until November 11 was 6247, which⁸ ⁹corresponds to 611 deaths per million [8]. This figure is typical for Europe but high⁹ ¹⁰compared to Sweden's Nordic neighbors. Norway, which is very similar to Sweden¹⁰ ¹¹in most respects, has chosen a much more strict approach against COVID-19. As¹¹ ¹²a result, by November 11, Norway had only 285 confirmed deaths (53 per million)¹² ¹³related to COVID-19 [8].

14

14

¹⁵ It has been suggested that the criticism of the Swedish strategy has been based¹⁵ ¹⁶ on the norm that considers death from coronavirus infection to be more impor-¹⁶ ¹⁷ tant than death from another infection [9]. The implicit assumption behind this¹⁷ ¹⁸ suggestion is that the pandemic's mortality rate was not substantially higher than¹⁸ ¹⁹ during previous seasonal influenzas and that all-cause excess mortality in Sweden¹⁹ ²⁰ differed significantly from the confirmed coronavirus-related mortality throughout²⁰ ²¹ the pandemic wave. In this paper, we investigate the validity of these assumptions.²¹ ²² Also, we estimate the years of life lost (YYL) in Sweden that can be attributed to²² ²³ its relaxed mitigation strategy.²³

²⁵ Our results and conclusions differ from Juul et al. (2020) [10], who suggest that ²⁶ ²⁶ all-cause mortality in Norway and Sweden during the first wave of the COVID-19²⁶ ²⁷ epidemic up to July 2020 was largely unchanged compared to the previous four ²⁸ ²⁸ years and that the high excess mortality observed in Sweden during the epidemic ²⁸ ²⁹ wave was partly due to a mild influenza season during the winter 2019/20. In that ²⁹ ³⁰ paper, the 5741 COVID-19 deaths in Sweden reported between March 11 and July ³⁰ ³¹ 26 were interpreted partly as a mortality displacement within the epidemic year³¹ ³² 2019/20 and from this year to the next, with the implication that few years of life ³² ³³ were lost.

¹2 Results

²2.1 Estimates of excess mortality

³The mortality rate in Scandinavia has a seasonal variation and is higher in the³ ⁴boreal winter [11]. As shown in Figure 1A, the weekly number of all-cause deaths⁴ ⁵also shows a significant negative linear trend ($p = 10^{-15}$ for Norway and $p = 10^{-75}$ ⁶for Sweden) over the last twenty years. The expected mortality-rate signal from⁶ ⁷the average seasonality and the linear trend is shown as black curves in Figure 1.⁷ ⁸In the following, we will refer to this as the baseline signal. Our definition of the⁸ ⁹baseline is different from that in the widely used EuroMoMo model [12], which does⁹ ¹⁰not include the expected winter influenza in the baseline. That is reasonable when¹⁰ ¹¹the seasonal influenza is the main object of study, but not when this object is a¹¹ ¹²pandemic like COVID-19.

¹³ The excess mortality rate for a given week is the weekly mortality rate that week¹³ ¹⁴minus the baseline at the time. It can be positive or negative, depending on whether¹⁴ ¹⁵the instantaneous mortality rate that week is above or below the baseline.¹⁵

¹⁶ We plotted the expected all-cause mortality rate for Norway and Sweden over¹⁶ ¹⁷ the epidemic seasons from 2016/17 up to 2020/21 and the recorded rate up to¹⁷ ¹⁸ November 11, 2020 (Figure 1 B and C). For both countries, mortality during the¹⁸ ¹⁹ winters of 2016/17 and 2017/18 was higher than baseline, mostly because of stronger¹⁹ ²⁰ than normal seasonal influenza [13]. In Sweden, the mortality rate in 2018/19 and²⁰ ²¹ 2019/20 was below the baseline until the COVID-19 outbreak in March 2020. Still,²¹ ²² after March 11, it was way above until July and then remained slightly below until²² ²³ November. We estimated the excess mortality rate during the epidemic from March²³ ²⁴ 11 until November 11 as the difference between the observed and expected rate.²⁴ ²⁵ We compared it to the numbers of weekly reported COVID-19 deaths (Figure 1 D²⁵ ²⁶ and E). The excess all-cause deaths were slightly more numerous than the reported²⁶ ²⁷ COVID-19 deaths in both countries during the peak of the first epidemic wave.²⁷

²⁸ To examine the issue of mortality displacement in further detail, we produced²⁸
²⁹Figure 2 A and B, where we plot the excess mortality rate over the last four years.²⁹
³⁰The blue lines mark the mean excess rate for each epidemic year (from July until³⁰
³¹July next year).³¹

³² For both countries, we observe that the two first years are above baseline. For ³³Norway, the year preceding the pandemic was at the baseline, while during the

¹pandemic year 2019/20, the death number was 517 (-12, 1074), where the numbers¹ ²in the brackets represent the 95% confidence interval. In Sweden, the pre-pandemic² ³year saw -1 596 (-2 508, -680) deaths (below baseline), while the pandemic year had³ ⁴an excess number of 4 329 (3 331, 5 325). The 255 reported COVID-19 deaths in⁴ ⁵Norway is within the confidence interval for the excess estimates, and the 5 741 in⁵ ⁶Sweden is slightly above. For the epidemic period March 11 - November 11, however,⁶ ⁷Sweden had 6 247 reported COVID-19 deaths which is within the confidence interval⁷ ⁸of the 5 517 (4 701, 6 330) excess deaths for this period. Using the same definition,⁸ ⁹we estimated the annual excess numbers for the last twenty epidemic years (Table⁹ ¹⁰1 and Figure 2 C and D). ¹¹ ¹²2.2 Estimates of years of life lost (YLL) in Sweden

¹³ Using data on life expectancy in different age groups in Sweden [14] (Table 2) we
¹⁴ simulated the YLL using the model
¹⁵ 15

¹⁶ YLL =
$$X [0.10r_1 + 0.30r_2 + 0.35r_3 + 0.25r_4],$$
 (1)¹⁶
¹⁷

¹⁸where the random variable X represents the excess mortality, with the estimated¹⁸ ¹⁹distribution for 2019/2020, and the random variables r_1, \ldots, r_4 are the life expectan-¹⁹ ²⁰cies in each age group. We assumed the life expectancies to be independent and²⁰ ²¹normally distributed random variables. The resulting estimate from these statistics²¹ ²²is YLL = 45 850 (13 915, 80 276). ²³

²⁴2.3 Estimate of displacement effect

25 We estimated the autocorrelation functions (ACF) based on the twenty years of 26 26 weekly excess mortality rate data for Norway and Sweden (Figure 3 A and B). In 27 27 Sweden, we saw a slight anti-correlation in the year-to-year excess mortality. Hence, 28 it is conceivable that the large excess mortality in 2019/20 may cause a response 29 of negative excess mortality in the next few years. The simplest way to model such 30 30 a displacement effect is to use a first-order auto-regressive process (AR1) for the 31 31 annual excess mortality X_t : 32 32 33 33

$$X_{t+\Delta t} = \phi X_t + \xi_t \tag{2}$$

Δ

4

19

¹where $\Delta t = 1$ yr and ξ_t is a white-noise term. The estimated AR1 coefficient for¹ ²Sweden is $\phi = -0.11$ (-0.50, 0.30), and the adjustment of excess mortality in 2019/20² ³due to mortality displacement is

$$_{5} \qquad X_{\rm adj} = X + \rho X, \tag{3}_{5}$$

⁶ where X is the excess mortality in 2019/20. Taking only response in 2020/21 into ⁷ account one has $\rho = \phi$, but if including the response over a few years one can use ⁸ the sum of the geometric series: ⁹

10
$$\rho = \phi + \phi^2 + \dots = \frac{\phi}{1 - \phi}$$
. 10

¹²The estimated mean of ρ was -0.06. The median was -0.10, and the 95% CI was¹² ¹³(-0.33, 0.43). Using the distribution of ρ to take the effect of possible displacement¹³ ¹⁴into account the excess mortality in Sweden for 2019/20 was adjusted to a mean¹⁴ ¹⁵value of 4 098 (2 706, 6 421) (Figure 4A). Carrying out the estimates of YLL with¹⁵ ¹⁶this distribution of excess mortality in 2019/20 we obtained an YLL estimate of¹⁶ ¹⁷43 073 (12 160, 85 451). Compared to the result in Section 2.2, the mean is reduced¹⁷ ¹⁸by 6% (Figure 4B).

¹⁹3 Discussion

²⁰It is commonly claimed, as done in [10], that all-cause mortality rates are more
²¹reliable than reported COVID-19 related deaths. The results presented in this paper
²²show that if our model for estimating the expected mortality rate is used, the two
²³rates agree within the confidence range of the estimated all-cause excess rate. Our
²⁴corresponding estimates of YLL are consistent with Oh et al. [15].

²⁵ Another central issue raised in [10] is whether the COVID-19 peak in the all-²⁶ ²⁶ cause mortality rate observed in Swedish data could be explained as mortality ²⁶ ²⁷ displacement, either from the preceding year or from the months preceding the ²⁷ ²⁸ epidemic wave within the epidemic year 2019/20, or from both. We have already ²⁸ ²⁹ seen that the negative excess death number (-1596) in 2018/19 constitutes less than ²⁹ ³⁰ 40% of the positive excess (+4329) in 2019/20, so such a displacement can only ³⁰ ³¹ explain part of this excess. Rather than displacements between epidemic years, one ³¹ ³² can alternatively consider displacement from the twenty months starting in July ³² ³³ 2018 and ending March 2020 into the epidemic period from March until November

21

22

26

¹2020. During the first period of lower than normal mortality, approximately 2 500¹ ²deaths were avoided, but this can still explain only less than half of the 5.5 thousand² ³excess all-cause deaths so far during the epidemic wave. ³

⁴ We have seen that a negative excess rate before the pandemic creates a pool of⁴ ⁵survivors that potentially could be particularly vulnerable to COVID-19. But the⁵ ⁶existence of this pool does not imply that it actually contributed more than normal⁶ ⁷to the COVID-19 deaths. If this displacement mechanism played an important rôle⁷ ⁸in determining the fluctuations of the all-cause excess mortality rate in Scandinavia,⁸ ⁹it should be observable in its time series. Year-to-year variations are dominated⁹ ¹⁰by variations in seasonal influenza, and we should observe negative correlations¹⁰ ¹¹between excesses in a given year and the following year (or years). In other words, ¹¹ ¹²we should observe this negative correlation in the autocorrelation function (ACF)¹² ¹³for the weekly all-cause excess time series. Figure 3 shows the estimated ACF for¹³ ¹⁴Norway and Sweden based on twenty years of weekly data (1040 data points). The¹⁴ ¹⁵confidence intervals for each year of time lag are given as error bars in the figures.¹⁵ ¹⁶Only a very weak correlation can be detected on time scales longer than the duration¹⁶ ¹⁷of the peak season for influenza. We draw from this that mortality displacement¹⁷ ¹⁸ is not generally a major driver of the excess mortality fluctuations in Norway and ¹⁸ 19 ¹⁹Sweden.

₂₁4 Materials and methods

224.1 Data sources

 $_{23}$ Weekly mortality data was downloaded from Statistics Sweden (SCB) [14] and $_{23}$ $_{24}$ Statistics Norway (SSB) [16]. COVID-19-related deaths were obtained from our- $_{24}$ $_{25}$ worldindata.org [8].

²⁶4.2 Estimation of the expected mortality-rate signal

²⁷We first computed the linear trend in mortality by simple linear regression. After ²⁸subtracting the trend, we computed the expected seasonal variation over a year ²⁹by averaging the July-to-July signal over those twenty years. By repeating this ³⁰expected seasonal variation over the twenty years, and adding the linear trend, ³¹we obtained the expected mortality-rate signal (the baseline, illustrated as black ³²curves in Figure 1 A, B, and C). The excess mortality rate for a given week was ³³defined as the weekly mortality rate that week, minus the expected mortality rate

15

21

¹at the time. The 95% CI for the estimate of the expected signal was computed¹ ²using a Monte-Carlo simulation. First, we repeatedly randomized the estimated² ³excess mortality-rate signal without changing its correlation structure. The method³ ⁴was to Fourier transform, randomize the phases of the Fourier coefficients, and then⁴ ⁵invert the transform [17]. Then we added this new realization of the excess mortality⁵ ⁶random process to the previously estimated expected mortality signal. Finally, we⁶ ⁷made new estimates of the trend and seasonal variation to obtain new realizations⁷ ⁸of the expected signal. By this procedure, we established a distribution of expected⁸ ⁹signals from which we could establish a mean and a confidence interval.

114.3 The autocorrelation of the excess mortality signal

¹²We obtainted the ACF for the signal by the estimator

¹³
₁₄ ACF(
$$\tau$$
) = $\frac{1}{(N-\tau)\sigma^2} \sum_{t=1}^{N-\tau} (x_t - x_{t+\tau})$ (4)₁₄

where τ is the time lag, μ is the sample mean and σ^2 the sample variance of the weekly excess mortality rate signal of length N = 1040 weeks. The blue points in Figure 2 is the ACF estimated from the annual data. The error bars were computed estimating the ACF for the 52 different signals with annual resolution. We had 52 time series since there are 52 weeks in a year.

²¹4.4 Estimates of the AR1 parameter

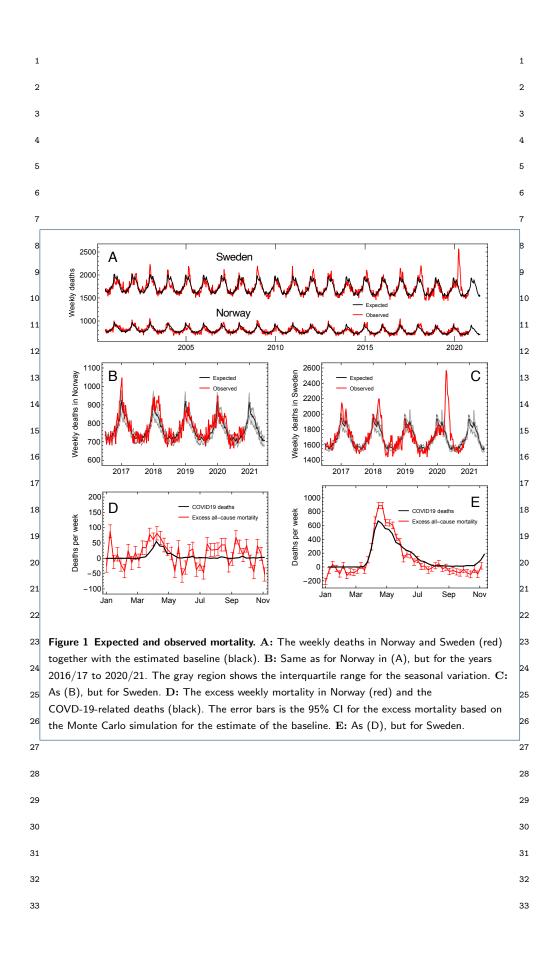
To find the parameter ϕ in Eq. 2 we used the standard maximum-likelihood estimates ϕ 22 23 23 mator. The distribution of ϕ was obtained from a bootstrapping method where we 24 24 simulated the estimated process and re-estimated the parameter ϕ repeatedly. The 25 25 maximum likelihood estimator is known to biased for short time series but for small 26 26 negative values of ϕ this bias is negligible [18]. 27 27 28

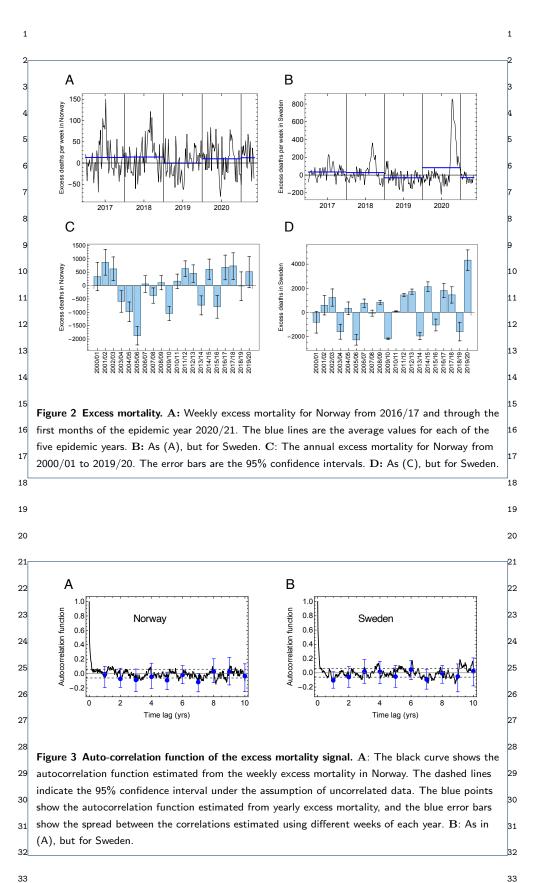
²⁸Competing interests

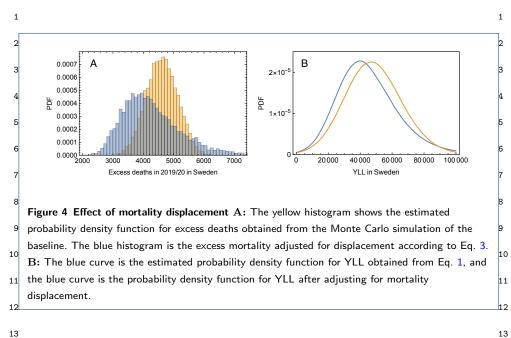
15

 29
 The authors declare that they have no competing interests.
 29

 30
 Author's contributions
 30


 The authors jointly conceived the study. MR, FMB, and SHS analyzed data. MR and KR wrote the paper with input
 31


 31
 from all authors.
 31


 32
 Author details
 32

¹Department of Mathematics and Statistics, UiT - The Arctic University of Norway, Norway. ²Department of 33 Community Medicine, UiT - The Arctic University of Norway, Norway.

¹ Ref	ferences	1
	Paterlini, M.: 'Closing borders is ridiculous': the epidemiologist behind Sweden's controversial coronavirus	2
	strategy. Nature 580 , 574 (2020). doi:10.1038/d41586-020-01098-x	
³ 2.	Anderson, R.M., Heesterbeek, H., Klinkenberg, D., Hollingsworth, T.D.: How will country-based mitigation	3
4	measures influence the course of the covid-19 epidemic? The Lancet 395 (10228), 931–934 (2020). doi:10.1016/S0140-6736(20)30567-5	4
53.	Middleton, J., Lopes, H., Michelson, K., Reid, J.: Planning for a second wave pandemic of covid-19 and	5
6	planning for winter. International Journal of Public Health 65 (9), 1525–1527 (2020). doi:10.1007/s00038-020-01455-7	6
74.	Thompson, R.N., Hollingsworth, T.D., Isham, V., Arribas-Bel, D., Ashby, B., Britton, T., Challenor, P.,	7
8	Chappell, L.H.K., Clapham, H., Cunniffe, N.J., Dawid, A.P., Donnelly, C.A., Eggo, R.M., Funk, S., Gilbert, N., Glendinning, P., Gog, J.R., Hart, W.S., Heesterbeek, H., House, T., Keeling, M., Kiss, I.Z., Kretzschmar, M.E.	
9	Lloyd, A.L., McBryde, E.S., McCaw, J.M., McKinley, T.J., Miller, J.C., Morris, M., O'Neill, P.D., Parag, K.V.,	9
10	Pearson, C.A.B., Pellis, L., Pulliam, J.R.C., Ross, J.V., Tomba, G.S., Silverman, B.W., Struchiner, C.J.,	4.0
10	Tildesley, M.J., Trapman, P., Webb, C.R., Mollison, D., Restif, O.: Key questions for modelling covid-19 exit	10
11	strategies. Proceedings of the Royal Society B: Biological Sciences 287 (1932), 20201405 (2020).	11
10 F	doi:10.1098/rspb.2020.1405. https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2020.1405 Chang, S.L., Harding, N., Zachreson, C., Cliff, O.M., Prokopenko, M.: Modelling transmission and control of	12
12 5.	the covid-19 pandemic in Australia. Nature Communications 11 (1), 5710 (2020).	12
13	doi:10.1038/s41467-020-19393-6	13
11 6.	Blayac, T., Dubois, D., Duchêne, S., Nguyen-Van, P., Ventelou, B., Willinger, M.: Population preferences for	14
14 •	inclusive covid-19 policy responses. The Lancet Public Health. doi:10.1016/S2468-2667(20)30285-1	14
¹⁵ 7.	Kamerlin, S.C.L., Kasson, P.M.: Managing Coronavirus Disease 2019 Spread With Voluntary Public Health	15
16	Measures: Sweden as a Case Study for Pandemic Control. Clinical Infectious Diseases (2020). doi:10.1093/cid/ciaa864.	16
17	https://academic.oup.com/cid/advance-article-pdf/doi/10.1093/cid/ciaa864/33656748/ciaa864.pdf	17
8.	Our World in Data. https://ourworldindata.org	10
18 9.	Grothe-Hammer, M., Roth, S.: Dying is normal, dying with the coronavirus is not: a sociological analysis of the	18 9
19	implicit norms behind the criticism of Swedish 'exceptionalism'. European Societies $0(0)$, 1–16 (2020).	19
20	doi:10.1080/14616696.2020.1826555. https://doi.org/10.1080/14616696.2020.1826555	20
²⁰ 10.	Juul, F.E., Jodal, H.C., Barua, I., Refsum, E., Olsvik, Ø., Helsingen, L.M., Løberg, M., Bretthauer, M.,	20
21	Kalager, M., Emilsson, L.: Mortality in Norway and Sweden before and after the covid-19 outbreak: a cohort	21
22	study. medRxiv (2020). doi:10.1101/2020.11.11.20229708	22
²² 11.	Laake, K., Sverre, J.M.: Winter excess mortality: a comparison between Norway and England plus Wales. Age	22
23	and ageing 25 (5), 343–348 (1996)	23
	EuroMoMo. https://www.euromomo.eu Influenza in Sweden Season 2018-2019, Article Number: 19048-2019, Pub- Lic Health Agency of Sweden.	24
2113.	https://www.folkhalsomyndigheten.se/publicerat-material/publikationsarkiv/i/	21
25	influenza-in-sweden/?pub=63511	25
2614.	Statistics Sweden (SCB). https://www.scb.se/en/	26
	Oh, IH., Ock, M., Jang, S.Y., Go, DS., Kim, YE., Jung, YS., Kim, K.B., Park, H., Jo, MW., Yoon,	
27	SJ.: Years of life lost attributable to covid-19 in high-incidence countries. J Korean Med Sci 35(32) (2020)	27
28 ^{16.}	Statistics Norway (SSB). https://www.ssb.no/en/	28
	Schreiber, Schmitz: Improved surrogate data for nonlinearity tests. Physical review letters 77 4, 635-638 (1996)	
²⁹ 18.	Sørbye, S.H., Nicolau, P.G., Rue, H.: Model-based bias correction for short $AR(1)$ and $AR(2)$ processes (2020)	.29
30	2010.05870	30
31		31
51		51
32		32
33		33

14

Table 1 Excess mortality per year. The excess mortality is defined as the registered deaths per year 15 ¹⁵minus the expected number of deaths. The expected number of deaths are obtained from a model $_{16}$ with a linear trend superposed on a seasonal signal. The confidence intervals are obtained by repeated $_{16}$ re-estimates of the linear trend and seasonal signal in a Monte Carlo simulation (See Methods).

Year	Excess mo	ortality in Norway	Excess mo	rtality in Sweden
Tear	Estimate	(95% CI)	Estimate	(95% CI)
2000/01	334	(-180, 838)	-825	(-1752, 84)
2001/02	866	(391, 1331)	587	(-261, 1410)
2002/03	621	(173, 1050)	1227	(466, 1946)
2003/04	-591	(-1002, -192)	-1609	(-2281, -956)
2004/05	-977	(-1353, -606)	331	(-261, 903)
2005/06	-1874	(-2215, -1527)	-2283	(-2803, -1790)
2006/07	59	(-254, 373)	758	(314, 1188)
2007/08	-371	(-661, -95)	-67	(-449, 305)
2008/09	105	(-161, 367)	825	(497, 1151)
2009/10	-1043	(-1298, -783)	-2197	(-2505, -1885)
2010/11	163	(-98, 435)	87	(-241, 422)
2011/12	633	(362, 933)	1443	(1073, 1825)
2012/13	456	(160, 777)	1718	(1281, 2156)
2013/14	-732	(-1048, -390)	-1959	(-2467, -1448)
2014/15	608	(254, 980)	2131	(1547, 2717)
2015/16	-793	(-1178, -390)	-1046	(-1707, -378)
2016/17	682	(258, 1111)	1811	(1069, 2564)
2017/18	731	(281, 1196)	1450	(623, 2283)
2018/19	-15	(-516, 495)	-1596	(-2508, -680)
2019/20	517	(-12, 1074)	4329	(3331, 5325)
2020/21	646	(362, 957)	-1501	(-1917, -1079)

33

33

14

1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13

¹⁴Table 2 Proportion of deaths in 2020 in Sweden by age group and life expectancy by age group. ₁₅Data source: Statistics Sweden (SCB)

6	Age group (yrs)	Proportion of 2020 deaths	Life expectancy (yrs) Estimate (SD)
1	50 - 64	10%	27.5(3.8)
	65 - 79	30%	15.6(3.3)
	80 - 89	35%	7.0(1.6)
	> 90	25%	2.5(0.9)

21	21
	22
	23
24	24
25	25
26	26
27	27
28	28
	29
	30
31	31
32	32